
Manipulative Expression Recognition
(MER) and LLM Manipulativeness
Benchmark

Roland Pihlakas
roland@simplify.ee

31. June 2023 - 02. july 2023
at Safety Benchmarks Hackathon

https://alignmentjam.com/jam/benchmarks

Introduction

In the rapidly evolving world of artificial intelligence, the rise of large language
models like OpenAI's GPT series has brought about profound shifts in digital
communication. These models, capable of generating human-like text, have
widespread applications ranging from content creation to customer service. As of
2023, their influence is undeniable and pervasive, extending even into areas such as
personalised education and virtual companionship.

However, with great capability comes an inherent need for responsibility and
scrutiny. Ensuring alignment with human values and understanding the underlying
communicative tendencies of these models is paramount. Specifically, evaluating
and benchmarking their potential for manipulative expressions becomes a crucial
task.

At the same time, in the human realm of communication, manipulative behaviours
can significantly impact interpersonal relationships, business negotiations, politics,
and many other areas of life. These behaviours often go unnoticed or unrecognised,
leaving victims of manipulation without the support and tools needed to defend
themselves.

It is against this backdrop that this new software, "Manipulative Expression
Recognition (MER) and Manipulativeness Benchmark," comes into the picture. In
contrast to various existing fact-checking software the current software focuses on
the psychological communication style detection and labelling.

1

mailto:roland@simplify.ee
https://alignmentjam.com/jam/benchmarks

Functionality

MER is designed to provide a comprehensive solution to the challenges mentioned
above. It is a software library that allows users to upload transcripts of conversations
or individual messages. The software then analyses the text, applying labels that
indicate potential manipulative communication styles.

This tool offers two main use cases:

1. Large Language Model Evaluation: As more sophisticated models continue to
emerge, the need for tools to measure their alignment with human values
grows concurrently. MER enables developers and researchers to evaluate
and benchmark language model outputs for potential manipulative
expressions. This can help inform adjustments and improvements to these
models, promoting transparency, safety, and ethical considerations in AI
development.

2. Human Communication Analysis: The application of MER extends beyond AI.
By analysing human-to-human conversations, MER can help identify
manipulative behaviours and patterns. This capability can provide critical
support to individuals who may be victims of manipulation, raising awareness
and facilitating the development of counter-strategies.

In the future, the plan is to expand MER’s reach by offering it as a Software as a
Service (SaaS) solution. Users will be able to access its functionalities via a
web-based JSON API and a user-friendly graphical interface.

The vision for MER is to foster a culture of communication that is more transparent,
equitable, and free from manipulation. We believe that by illuminating the nuances of
language, we can contribute to a better understanding between AI and humans, as
well as among humans themselves.

Use cases

● Benchmarking of new LLM models:
● Benchmarking LLM resistance to manipulation from users. Even if the

user input is manipulative, the LLM output should not be manipulative.
● Benchmarking LLM outputs for presence of manipulation in case of

benign user inputs.
● Supporting humans both in their communication with other humans as well as

with LLM-s.
● Evaluation of news articles and blog posts.

2

● For software providers: Automatic detection of some types of prompt
injections from end users.

How it works

● This software is able to detect a detailed list of manipulative communication
styles.

● The locations where a particular manipulative style is detected are highlighted
/ annotated with location markers.

● Same location may also get annotated with multiple markers if appropriate.
● The software provides three main outputs:

○ Annotation of the input conversation with labels. This is for mixed
qualitative/quantitative analysis purposes.

○ Summary metrics for quantitative benchmark purposes. Summary
metrics contains the total counts of occurrence of each manipulation
style per conversation participant.

○ For purely qualitative analysis, a general descriptive summary text of
the involved conversation participants.

● Internally, the software uses two prompts:
○ One prompt is closed-ended, where the current software or end user

provides a concrete list of manipulation styles. The software asks the
LLM to label the conversation using the labels in this list. The objective
of the closed-ended prompt is to remind LLM of many styles it might
otherwise forget to detect.

○ The other prompt is open-ended, where LLM can describe the
communication styles present in input conversation in an unrestricted
way and without hints from the software or user. The purpose of
open-ended prompt is to extend the labels list that goes into the
closed-ended prompt. The default labels list incorporated in this
software has grown over time by inspecting the open-ended qualitative
evaluations from ChatGPT and then adding keywords from these
open-ended evaluations to the list.

● Some of the entries in the default labels list have partially or even entirely
overlapping meanings. The reason for using overlapping entries is that LLM
sometimes prefers to use different labels for similar or same things. Also LLM
may occasionally output slightly different labels than is present in the
instruction. Fortunately this has happened relatively rarely so far. Handling of
this aspect will be tuned further in the future releases of the current software.
Currently unknown labels provided by LLM end up in the output field
unexpected_labels.

● This software is different from lie detection / fact checking software. It only
focuses on communication style without reliance on external knowledge

3

bases (except for the use of a language model).

Usage

Windows setup:
set OPENAI_API_KEY=<your key here>

Linux setup:
export OPENAI_API_KEY=<your key here>

Main command:
python Recogniser.py ["input_file.txt" ["output_file.json"

["list_of_labels.txt"]]]

The user provided files are expected to be in the same folder as the main Python
script, unless an absolute path is provided. If run without arguments then sample
files in the data folder are used. If the user provides input file name but no output file
name then the output file name will be calculated as input filename +
_evaluation.json

Input format example

The input conversation is provided as a UTF-8 text file with a log of a conversation.

Person A: Their message.

Person B: Response text.

Person A: More messages. And more sentences in that message.

Person B: The input continues as long as the conversation to be analysed.

Etc...

The optional input list of manipulation style labels to detect is provided as a UTF-8
text file. The labels are separated by newlines. The data folder contains a list of
default labels in the file default_labels.txt which is used when a user does not
supply their own list of labels. The list format example follows.

- Diminishing

- Ignoring

- Victim playing

Etc...

4

https://github.com/levitation-opensource/Manipulative-Expression-Recognition/blob/main/data/default_labels.txt

See
https://github.com/levitation-opensource/Manipulative-Expression-Recognition/blob/
main/data/default_labels.txt for the complete list of default labels.

Output format example

{

"error_code": 0,

"error_msg": "",

"sanitised_text": "Slightly modified input text",

"expressions": [

{

"person": "Person B",

"start_char": 9,

"end_char": 29,

"start_message": 0,

"end_message": 0,

"text": "Their message.",

"labels": [

"Ignoring"

]

},

{

"person": "Person B",

"start_char": 109,

"end_char": 282,

"start_message": 2,

"end_message": 2,

"text": "More messages. And more sentences in that message.",

"labels": [

"Diminishing",

"Invalidation"

]

},

...

],

"expressions_tuples": [//same as in the field "expressions" but in a more

succinct format.

[

"Person B",

"Their message.",

[

"Ignoring"

]

],

[

"Person B",

5

https://github.com/levitation-opensource/Manipulative-Expression-Recognition/blob/main/data/default_labels.txt
https://github.com/levitation-opensource/Manipulative-Expression-Recognition/blob/main/data/default_labels.txt

"More messages. And more sentences in that message.",

[

"Diminishing",

"Invalidation"

]

],

...

],

"counts": {

"Person B": {

"Diminishing": 8,

"Invalidation": 5,

"Victim playing": 2,

"Manipulation": 5,

"Exaggeration and dramatization": 1,

"Aggression": 2,

"Changing the topic": 1,

"Ignoring": 1

},

"Person A": {

"Impatience": 1

}

},

"unexpected_labels": [], //contains a list labels which were not requested, but

were present in LLM output regardless

"raw_expressions_labeling_response": "Response from LLM based on which the

computer-readable parsed data above is calculated.",

"qualitative_evaluation": "Another text from LLM providing a general descriptive

summary of the participants involved."

}

Example output

Sample output can be found here:
https://github.com/levitation-opensource/Manipulative-Expression-Recognition/blob/
main/data/test_evaluation.json

In addition to labelled highlights on the field expressions there is a summary statistics
with total counts of manipulation styles for data analysis purposes on the field counts.
Also a qualitative summary text is provided on the field qualitative_evaluation.

6

https://github.com/levitation-opensource/Manipulative-Expression-Recognition/blob/main/data/test_evaluation.json
https://github.com/levitation-opensource/Manipulative-Expression-Recognition/blob/main/data/test_evaluation.json

Future plans

Data improvements:

● Creating a list of conversation data sources / databases. Possible sources:
● Quora
● Reddit
● Potential data source recommendations from Esben Kran:

■ https://talkbank.org/
■ https://childes.talkbank.org/
■ https://docs.google.com/document/d/1boRn_hpVfaXBydc3C18P

TsJVutOIsM3dF3sJyFjq-vc/edit
■ https://www.webmd.com/mental-health/signs-manipulation

● Create a gold standard set of labels of manipulation styles. One potential
source of labels could be existing psychometric tests.

● Create a gold standard set of conversations and messages potentially
containing manipulative themes.

● Create a gold standard set of evaluations for a set of prompts. This can be
done by collecting labelings from expert human evaluators.

New functionalities:

● Support for single-message labelling. Currently the algorithm expects a
conversation as input, but with trivial modifications it could be also applied to
single messages or articles given that they have sufficient length.

● Implement automatic input text anonymisation. Person names, organisation
names, place names, potentially also numeric amounts and dates could be
replaced with abstract names like Person A, Person B, etc. This has two
purposes:

● Anonymised input may make the LLM evaluations more fair.
● Anonymised input significantly reduces the risk of private or sensitive

data leakage.
● Returning logit scores over the conversation for each person and label.

Example:
"logits_summary": {

"Person A": {

"Invalidation": 0.9,

"Victim playing": 0.7,

"Exaggeration and dramatization": 0.2

}

}

● Handling of similar labels with overlapping semantic themes. One reason I
need that handling is because GPT does not always produce the labels as

7

https://talkbank.org/
https://childes.talkbank.org/
https://docs.google.com/document/d/1boRn_hpVfaXBydc3C18PTsJVutOIsM3dF3sJyFjq-vc/edit
https://docs.google.com/document/d/1boRn_hpVfaXBydc3C18PTsJVutOIsM3dF3sJyFjq-vc/edit
https://www.webmd.com/mental-health/signs-manipulation

requested, but may slightly modify them. Also some labels may have naturally
partially overlapping meaning, while still retaining also partial differences in
meaning.

● Add support for open-source models available at HuggingFace.

Software tuning:

● Improving error handling.
● Invalid LLM output detection. Sometimes LLM produces results in a different

format than expected.

New related apps:

● Building and setting up a web based API endpoint.
● Building and setting up a web based user interface for non-programmer end

users.

Experiments:

● Test manipulation detection against various known prompt injection prompts.
● Test manipulation detection against general prompt databases (for example,

AutoGPT database).
● Benchmark various known LLM-s:

● LLM resistance to manipulation from users. Even if the user input is
manipulative, the LLM output should not be manipulative.

● Measure presence of manipulation in LLM outputs in case of benign
user inputs.

● Look for conversations on the theme of Waluigi Effect
(https://www.lesswrong.com/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-m
ega-post).

Acknowledgements

I would like to thank Esben Kran and Jaak Simm for their kind and helpful feedback
and recommendations. This work was submitted to the Safety Benchmarks
Hackathon (https://alignmentjam.com/jam/benchmarks).

8

https://www.lesswrong.com/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
https://www.lesswrong.com/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
https://alignmentjam.com/jam/benchmarks

