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 Abstract 
 Extensive  research  in  mechanistic  interpretability  has  showcased  the 
 effectiveness  of  a  multitude  of  techniques  for  uncovering  intriguing 
 circuit  patterns.  We  utilize  these  techniques  to  compare  similarities  and 
 differences  among  analogous  numerical  sequences,  such  as  the  digits 
 “1,  2,  3,  4”,  the  words  “one,  two,  three,  four”,  and  the  months  “January, 
 February,  March,  April”.  Our  findings  demonstrate  preliminary 
 evidence  suggesting  that  these  semantically  related  sequences  share 
 common  activation  patterns  in  GPT-2  Small.  Experiments  and  code  are 
 available at:  https://github.com/wlg100/numseqcont_circuit_expms 

 Keywords:Mechanistic interpretability, AI safety 

 1.  Introduction 

 There  are  many  unanswered  questions  in  the  field  of  mechanistic  interpretability.  In  this 
 report,  we  tackle  the  problem  of  locating  circuits  for  “Problem  2.2.  Continuing  sequences 
 that  are  common  in  natural  language  (E.g,  Input:  "1  2  3  4"  ->  Output:  "5",  days  of  the 
 week,  etc.)” from the following list of open problems (Nanda, 2023a): 

200 Concrete Problems In Interpretability Spreadsheet

 Our  approach  begins  by  applying  activation  patching  and  attention  pattern  analysis  to 
 GPT-2  Small  outputs  of  analogous  sequential  inputs,  such  as  the  digits  “1,  2,  3,  4”,  the 
 numerical  words  “one,  two,  three,  four”,  and  the  months  “January,  February,  March, 
 April”.  Next,  we  employ  methods  to  deduce  attention  head  copying  and  writing 
 directions,  and  to  examine  how  Multilayer  Perceptron  (MLP)  neurons  react  to  both 
 numerical  features  and  to  features  of  sequences  mapped  onto  numerical  sequences.  From 
 these results, we conjecture a very simple candidate circuit for the digits sequence. 

 Finally,  we  perform  mean  ablation  on  attention  heads  that  are  not  part  of  this  candidate 
 circuit.  As  our  exploratory  analysis  reveals  that  several  analogous  sequences  share  the 
 same  important  heads  and  attention  patterns,  we  run  mean  ablation  for  these  analogous 
 sequences on this one circuit of the digits sequence, and observe how their results differ. 

 1  Research  conducted  at  the  Apart  Research  Alignment  Jam  #10  (Interpretability  3.0),  2023  (see 
 https://alignmentjam.com/jam/interpretability  ) 
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 Finding  a  shared  pattern  (within  models)  between  these  analogous  sequences  is  of  interest 
 to  us  because  informally  speaking,  we  ask:  do  there  exist  “primordial”  archetypal  circuits 
 that  compose  with  additional  components  to  construct  more  specific  circuits?  Is  there  a 
 way  to  measure  the  optimality  of  representations  for  more  general  circuits  in  relation  to 
 the  sparsity  of  specific  circuits  they  interact  with?  Does  this  affect  how  they  are  arranged 
 as  directions  or  regions  in  latent  space?  These  questions  are  beyond  the  scope  of  this 
 study, but it acts as a start of an investigation. 

 2.  Test Prompts 

 We  start  by  testing  how  GPT-2  Small  reacts  to  sequences  of  increasing  order,  which 
 include  “canonical”  mappings  to  the  natural  numbers  that  are  widely  accepted  by  society. 
 These  include  days  of  the  week,  differentiating  additive  sequences  like  “2  4  6  8”  from 
 multiplicative  sequences  like  “2  4  8  16”,  and  more.  We  also  test  on  other  types  of 
 sequences,  such  as  on  repeating  digits  or  words.  While  GPT-2  Small  is  able  to  correctly 
 predict  the  output  for  some  consecutive  sequences  given  only  2  or  3  elements,  it  is  able  to 
 barely  succeed  for  more  complex  sequences  such  as  “2  4  6…”  only  when  given  6  or  more 
 elements,  and  fails  on  others  despite  being  given  many  elements  to  guess  an  in-context 
 pattern  from.  Afterwards,  we  choose  these  5  sequences  to  compare  and  analyze  further: 
 digits, numerical words, months, days of the week, and the alphabet. 

 3.  DLA, Activation Patching, and Attention Patterns 

 We  create  a  template  by  slightly  re-organizing  the  Exploratory  Analysis  Demo  notebook 
 (Nanda,  2023b),  and  run  this  template  on  various  inputs.  This  template  consists  of  Direct 
 Logit  Attribution  (DLA),  Activation  Patching,  and  Attention  Patterns,  which  are 
 techniques applied by (Wang et al. 2022) that were initiated by (Meng et al., 2022). 

 To  mitigate  the  cases  where  the  circuit  was  specific  only  to  “1  2  3  4”  and  not  to  other 
 length-4  digit  sequences,  we  run  a  dataset  of  multiple  prompts  consisting  of  overlapping 
 sequences  such  as  “2  3  4  5”,  ranging  up  to  20.  For  number  words,  we  use  one  to  ten,  as 
 there  are  numerical  words  higher  than  ten  that  consist  of  multiple  tokens.  For  letters,  we 
 only  use  7  prompts,  as  the  model  does  not  complete  many  letter  sequences  correctly. 
 These  “multi-prompt”  results  are  largely  similar  to  the  single-prompt  results.  The 
 following results are from the notebooks in the repo’s folder “actv_patch_small”: 

 Direct Logit Attribution 

 Figure 1 – Logit Difference from each Layer (by attn and MLP) for Digit Prompts 

 Each  analogous  sequence  had  similar  DLA  results.  For  instance,  each  had  a  similar  trend 
 of rising MLP_9 and MLP_10, and falling attn_10 and attn_11, as shown in Figure 1. 
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 Activation Patching 

 To  corrupt  the  inputs  such  that  the  corruption  produces  (incorrect  token  logit)  >  (correct 
 token  logit),  we  consider  several  possible  candidates,  including:  repeating  the  last  K 
 elements  (eg.  1  2  3  3),  switching  the  last  and  second  last  elements,  and  corrupting  at  the 
 (n-k)  position  with  a  repeat  or  non-number  word.  We  choose  to  make  the  last  element  the 
 same as the 2nd last (eg. 1 2 3 3). 

 When  patching  by  layer,  we  observe  that  each  analogous  sequence  has  similar  results, 
 with  very  high  values  at  L9  for  both  attention  and  MLP  layers.  We  note  that  MLP  has  a 
 higher max range of 0.6 than attention’s 0.2, indicating MLP’s importance. 

 Important Attention Heads 

 Four  of  the  prompt  types  share  many  top  attention  heads  with  positive  restoration  found 
 by  activation  patching.  These  top  heads  are  shown  in  Table  1,  where  the  value  following 
 the  head  is  the  normalized  patched  logit  difference,  and  the  last  row  shows  which  heads 
 of  that  column’s  top  heads  differ  from  the  digit’s  top  heads.  We  denote  heads  using  the 
 labeling  structure  of  Layer.Head  (eg.  L9H1  :=  9.1).  Only  the  alphabet  sequence-type 
 differs  greatly  from  the  rest,  albeit  it  shares  9.1  as  a  highly  important  head.  Additionally, 
 we  observe  that  the  OV  component  of  head  9.1  is  much  more  important  than  its  QK 
 component. 

 Digits  NumWords  Months  DaysWeek  Alphabet 

 9.1: 0.21 
 7.10: 0.06 
 10.7:  0.04 
 8.8:  0.04 
 0.1:  0.03 
 8.11: 0.02 
 6.1:  0.02 
 0.5:  0.01 
 9.9:  0.01 
 11.10: 0.01 

 9.1:   0.30 
 0.1:   0.05 
 8.8:   0.05 
 7.10:  0.04 
 6.1:   0.04 
 0.5:   0.03 
 8.11:  0.03 
 10.7:  0.02 
 11.10: 0.01 
 0.3:   0.01 

 9.1: 0.24 
 7.10: 0.05 
 0.1: 0.05 
 8.11: 0.04 
 6.1: 0.03 
 10.7: 0.03 
 0.3: 0.02 
 0.5: 0.02 
 8.8: 0.02 
 5.1: 0.01 

 9.1:   0.29 
 8.11:  0.15 
 0.1:   0.13 
 7.10:  0.09 
 6.1:   0.06 
 8.8:   0.05 
 10.7:  0.04 
 6.9:   0.03 
 0.5:   0.03 
 5.1:   0.02 

 10.7:  0.73 
 9.1:   0.72 
 11.10: 0.47 
 11.0:  0.10 
 9.5:   0.10 
 6.1:   0.08 
 8.10:  0.07 
 5.8:   0.05 
 0.9:   0.04 
 0.10:  0.04 

 N/A  0.3  0.3, 5.1  5.1, 6.9  6 heads 

 Table A1 - Top positive attention heads and normalized patched logit difference for each 
 input type. Last row: heads of that column’s top heads that differ from the digit’s top 

 heads 

 Attention Patterns 

 The  attention  patterns  of  the  digits  sequences  are  mostly  the  same  for  all  its  top  heads; 
 they  attend  stronger  to  more  recent  numbers.  This  is  unsurprising,  as  our  test  prompts 
 find  that  “corrupting”  tokens  before  the  last  or  second  last  still  allows  the  model  to 
 complete  the  sequence  correctly,  indicating  those  two  tokens  are  by  far  the  most 
 important , though the ones before do still contribute to the logit of the correct output. 

 For  numwords,  we  find  heads  such  as  6.1,  which  attend  from  four  to  two  as  seen  in 
 Figure  2(a),  and  also  three  to  two  as  seen  in  Figure  2(b).  6.1  also  attends  to  more  than  just 
 the  previous  token  in  months  and  days,  as  shown  in  Figure  2(c).  We  did  not  compare  with 
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 the  alphabet  sequences  as  it  does  not  share  many  heads  with  the  others.  (Nanda,  2023c) 
 does not indicate 6.1 is an induction head. 

 Figure 2 – (a) (b) [top] 6.1 for numwords, (c) [bottom]  6.1 for months 

 Overall,  these  heads  appear  to  either  attend  to  the  previous  (n-1)  token  or  the  n-2  token. 
 As  there  are  no  other  ‘non-number’  words  to  compare  to,  it  is  hard  to  tell  what  ‘type’  of 
 token  they  are  attending  to.  In  Section  6  (Numerical  Sequences  Among  Other  Words),  we 
 devise an approach to measure what types of tokens the heads attend to. 

 Comparison to GPT-2 Medium 

 As  GPT-2  Medium  is  not  our  main  focus,  we  do  not  go  into  depth  about  it.  When  we  run 
 it  on  the  sequence  “2  4  6  8  10  12”,  we  notice  that  head  11.4  attends  to  “6”,  similar  to  6.1 
 in  the  examples  above.  More  importantly,  it  has  a  head  19.1  that  is  very  important, 
 appearing  very  similar  to  9.1.  It  may  be  the  case  that  9.1  from  Small  and  19.1  from 
 Medium perform similar functions, but we do not investigate further. 

 4.  Attention Heads Analysis: Writing + Copying Directions 

 These  methods  re-organize  code  from  (Wang  et  al.,  2022).  In  Figure  3,  the  x-axis 
 represents  the  (<end>,  S)  value  of  the  QK  matrix;  that  is,  the  attention  that  <end>  pays  to 
 token  S.  The  y-axis  represents  how  much  token  S  contributes  to  the  output  value  of  the 
 attention  head  (in  Figure  X,  this  is  9.1).  This  measures  the  strength  of  the  correlation 
 between  when  <end>  attends  to  S,  and  how  strong  the  output  will  be  “composed  of”  S  (in 
 the case of copy scores, this means outputting S with high logits). 
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 Figure 3 – Writing Direction Scatterplot for tokens in digit sequences, head 9.1 
 (Correlation: 0.8128, p-value: 8.9942e-70) 

 We observe there to be strong correlation, indicating that this head 9.1 is detecting 
 numbers. 

 To check that 9.1 is outputting something to do with numbers, we studied what values are 
 written via the heads’ OV matrix. The calculation of this “copy score” is described in 
 (Wang et al., 2022). 

 Figure 4 – The top-5 tokens output and copy score for digits, head 9.1 

 Figure  4  shows  9.1  often  appears  to  be  outputting  a  token  synonymous  to  I+1  or  higher 
 from  a  token  input  I  (a  number),  while  sometimes  outputting  ones  before  I.  Thus,  it  may 
 function  not  just  as  a  “copy”  head,  but  as  a  “next”  head.  Alternatively  but  similarly,  it 
 may  appear  to  be  performing  next-token  prediction.  As  there  are  infinite  natural  numbers, 
 it may not be memorizing what comes after each number, perhaps after a certain point. 

 Similar patterns can be seen when passing in month inputs, as seen in Figures 5 and 6. 

 Figure 5 - Month inputs on 7.11, Copy Score and top-5 tokens 
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 Figure 6 – Writing Direction Scatterplot for tokens in month sequences, head 9.1 
 (Correlation: 0.9307, p-value: 4.3906e-11) 

 We  plan  to  modify  this  code  to  measure  “next”  score  in  addition  to  copy  score  in  the 
 future,  which  will  provide  a  more  accurate  picture  of  9.1’s  importance,  and  then  apply 
 these  methods  to  more  heads  and  analogous  sequences  to  further  decipher  this  circuit’s 
 functionalities. 

 5.  MLP Analysis 

 This  analysis  uses  code  re-organized  from  (Miller  et  al.,  2023).  We  utilize  activation 
 patching  on  individual  neurons  to  find  important  neurons,  as  displayed  in  Figure  7.  Using 
 multi-prompts  for  digits,  we  look  at  L9  and  L10  to  find  two  that  stand  out  as  “number 
 neurons”: 

 ●  Layer 9: 934 
 ●  Layer 10: 1721 

 Figure  7  -  Activation  Patching  by  Neuron  for  L10.  Neuron  1721  stand  out  as  having  more 
 than 0.2 patch improvement 

 Neuroscope  supports  these  findings  by  showing  its  strong  activations  near  number-type 
 tokens, as seen in Figure 8. 

 Apart Research Alignment Jam #10 (Interpretability 3.0), 2023  6 



 Figure 8 - A max activating example from the dataset for L10, N1721 
 Reference: https://neuroscope.io/gpt2-small/10/1721.html 

 As  this  section  can  involve  deep  analysis,  and  we  spent  a  little  time  looking  at  it  to 
 uncover only a few pieces of evidence, there is likely much more to find. 

 6.  Numerical Sequences Among Other Words 

 Adam is 1 … Eve is 5 

 Given  that  “1  2  3  4”  does  not  clearly  show  information  movement  between  different 
 types  of  tokens  due  to  being  comprised  solely  of  numerical  digit  tokens,  we  ran  these 
 experiments  through  other  prompts  that  contained  these  sequences  within  other  types  of 
 tokens.  For  instance,  we  tested  these  experiments  on  "Adam  is  1.  Bob  is  2.  Claire  is  3. 
 Don  is  4.  Eve  is"  .  We  denote  number-only  sequences  such  as  “1  2  3  4”  as  “pure”,  and  we 
 denote  sequences  interspersed  with  non-numbers  such  as  “Adam  is  1…”  as  “non-pure”. 
 We  looked  at  two  types  of  these  inputs:  using  names  as  non-numbers,  and  using 
 single-token random words as non-numbers. 

 We  found  that  “Adam  is  1”  and  “<random  word>  is  1”  mostly  had  similar  results 
 compared  to  the  pure  sequence.  The  main  difference  between  them  and  the  pure  sequence 
 was  that  their  heads  7.11  and  8.11  are  much  darker  than  in  the  pure  digit  sequence. 
 However,  we  did  not  consider  these  differences  to  be  significant  enough  to  include  more 
 detailed analysis and comparisons. 

 Thus,  we  decided  to  compare  the  rest  of  the  prompt  types  with  multi-prompt  “<name>  is 
 1”  rather  than  using  a  <random  word>,  as  sentences  with  <name>  makes  more  semantic 
 sense  to  a  reader.  To  control  for  unwanted  variations,  we  used  the  same  names  for  all  the 
 prompts,  varying  only  the  numbers.  On  the  repo,  these  results  are  in  the  notebook: 
 “actv_patch_word_is_num / multi_Adamis1_circuit_small.ipynb”. 

 Activation Patching 

 Patching  from  the  residual  stream  showed  information  movement  from  the  last  digit  to 
 the last token. 

 Attention Heads 

 Early Heads 
 We notice that Early Heads attend to previous tokens of exactly the same or similar types. 
 For instance, Figure 9 shows  digit tokens attend to  digit tokens. Thus, we hypothesize 
 that these are 'similarity detection' heads. 
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 Figure 9 – Evidence of Early Heads where (a) “is” tokens attend to “is”tokens, (b) name 
 tokens attend to name tokens, and (c) digit tokens attend to digit tokens 

 The brown highlights occur when most heads have the same type of query-key attention, 
 as the color heads mix together into brown. Figure 8(b) shows only head 1.5, as it showed 
 the strongest name-to-name attention, which overall is relatively weak. 

 Note  that  in  contrast  to  the  other  top  early  heads  which  appear  to  be  ‘similar  type 
 detection’  heads,  5.5  is  an  induction  head,  as  shown  in  (Nanda,  2023c).  In  Figure  8(a), 
 the  olive  highlights  from  a  token  to  a  token  one  position  before  the  similar  type  are  only 
 from  the  induction  head  5.5.  Given  that  the  input  provides  in-context  patterns  of  “is 
 <Number>”, the induction heads are likely detecting then continuing this pattern. 

 Middle Heads 
 Both the middle and late heads attend from the final token to the number token. Unlike in 
 IOI, where middle S-inhibition heads attended to the IO token to inhibit it, these middle 
 heads appear to have stronger attention on numbers that were more recent in the input 
 sequence. Thus, we hypothesize that they may be both boosting certain numbers and 
 moving them to the final token. 

 Figure 10 – Middle Heads for “Adam is 1…” prompts 
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 However,  there  is  an  alternate  explanation.  All  of  these  heads,  in  general,  appear  to  attend 
 to  the  last  n-2  positions.  Our  pure  sequence  experiments  with  the  same  middle  heads 
 draw  evidence  contrary  to  this  hypothesis.  Yet  another  possibility  is  that  each  head 
 attends  more  to  a  specific  type  of  number,  regardless  of  position.  As  we  see  in  Figure  10 
 each digit aside from 3 is attended to by a different distinct (non-mixed) color of a head. 

 Late heads 
 Late head 9.1, which strongly and positively contributes according to the activation 
 patching by heads heatmap in Figure 11, has much stronger attention to the most recent 
 number relative to all other numbers. From our observations on the shading, it appears to 
 attend even stronger to the most recent number than the previous heads in layers 7 and 8. 

 Figure 11 – Late Heads for “Adam is 1…” prompts 

 Refined Circuit Hypothesis 

 Based  on  our  findings  from  the  results  in  previous  sections,  we  further  refine  our 
 hypothesis of how this circuit performs the task of sequence continuation. 

 ●  Early heads from token (to previous tokens of similar or exact same type) 
 determined by V: We guess that these are 'similarity detection' heads 

 ●  Middle/Late heads from final token to number tokens determined by QK: these 
 compose with early head outputs to copy the information about the duplicate 
 token to final token to boost the attention paid from late (number mover) heads to 
 the most recent number 

 ●  Late heads: given the unimportance of L10 and L11, we surmise these may be 
 backup number heads, as backup name heads were mostly found in later layers in 
 IOI (Wang et al., 2022). However, we require tests to provide evidence for this. 

 Note that what is "late vs middle" is arbitrarily drawn here. So unlike in IOI, it seems that 
 8.11 and 9.1 are doing similar things: they don't need to "inhibit" Mary, they just directly 
 go to "boost" John. There may not be many differences between L7, L8 and L9. 

 To put it all together, we hypothesize that mid/late heads from final to previous number 
 tokens compose with early head outputs, and then attend to the correct number AND 
 copy that directly to the logits, using some way to boost attention based on how recent 
 the number is. Then somehow, either by attention 9.1 or MLP, this copied head is 
 associated (perhaps by key:value) (Meng et al., 2022) to the next number or sequence 
 member. 
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 Evidence that the heads are not just detecting the pattern “X is Y” 

 To  check  that  these  heads  are  not  just  detecting  the  general  pattern  of  “X  is  Y”,  but  of  “X 
 is  [number  type]”,  we  require  multiple  “X  is  Y”  prompts  that  are  predictable  in  order  to 
 get  correct  and  incorrect  logit  diff,  and  that  are  also  corruptible  that  resulted  in  the 
 incorrect  token  logit  being  greater  than  the  correct  token  logit.  Predictable  corruption  is 
 non-trivial,  so  we  only  look  at  1  prompt,  which  is  “A  is  A..  (repeat  4  times).  A  is”,  and 
 the corruption switches the last to “B is”, which predicts B. 

 As  shown  in  our  notebook  “AisA_circuit_small.ipynb”,  we  find  that  the  plots  result  in 
 very  different  trends  and  top  heads,  but  that  there  are  some  heads  in  common.  For 
 instance,  the  middle  heads  7.11  and  8.11  are  found  in  both  cases  to  attend  from  the  end 
 token  to  previous  tokens,  indicating  they  may  have  a  more  general  purpose  than  being 
 specific  for  sequence  circuits.  Additionally,  we  did  not  find  any  of  the  same  ‘similarity 
 detection’  early  heads.  Thus,  this  approach  allows  us  to  distinguish  between  heads 
 specific  to  numbers,  and  heads  involved  in  information  movement  in  general.  However, 
 we  are  aware  this  is  not  a  thorough  experiment  as  it  only  has  one  input,  and  more  tests 
 should be done to rule out this scenario. 

 One is 1 

 Figure X - 10.7 attends to what’s before “is”, unlike in previous cases 

 An  odd  discovery  is  that  the  prompt  “One  is  1…  Five”  causes  10.7  to  attend  to  “Five”, 
 which  is  unusual  as  in  previous  cases  it  did  not  attend  to  what  is  before  “is”  that  strongly. 
 At  first,  we  were  led  on  a  time-wasting  red  herring  tangent  to  think  that  10.7  had 
 something  to  do  with  the  number  word,  in  competition  with  other  heads  that  attend  to  the 
 digit  (like  9.1).  However,  we  did  not  uncover  more  evidence  of  this.  What’s  more  odd  is 
 that  capitalization  matters;  “one  is  1”  does  not  have  this  pattern.  But  “1  is  One”  may 
 have.  The  model  seems  to  behave  not  on  the  one,  but  on  the  One.  This  is  further  evidence 
 of cursed model behavior. 

 7.  Mean-Ablation Circuit Analysis 

 This  analysis  uses  code  re-organized  from  (Mcdougall,  2023).  For  each  sequence  type, 
 we  run  a  dataset  of  multiple  prompts  through  the  model.  This  section  has  issues,  and  thus 
 we  would  not  include  it  in  a  more  formal  research  paper,  but  in  this  writeup  report  we 
 include  errors,  thought  processes  to  double  check  methods,  and  negative  results  as  they 
 may help readers and beginners in this field to be aware of and avoid certain mistakes. 
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 Mean ablation by a similar dataset that removes number value 
 Given  that  these  sequence  prompts  have  different  structure  than  IOI,  we  investigate  ways 
 to  choose  a  dataset  to  obtain  mean  activations  from.  In  (Wang  et  al.,  2022),  a  mean 
 dataset  that  was  close  in  structure  to  the  main  dataset  (to  measure  scores  from)  was 
 chosen.  The  paper  states:  “Mean-ablations  remove  the  information  that  varies  in  the 
 reference  distribution  (e.g.  the  value  of  the  name  outputted  by  a  head)  but  will  preserve 
 constant information (e.g. the fact that a head is outputting a name).” 

 To  avoid  the  mean  dataset  containing  samples  from  the  main  dataset,  we  choose  to  split 
 the  datasets  into  two  non-overlapping  sets.  For  instance,  the  digits  sequence  dataset 
 contains  sequences  1  to  10  for  the  dataset  to  measure  scores  from,  and  the  mean  ablation 
 dataset  for  it  contains  sequences  11  to  20.  This  way,  information  that  the  head  is 
 outputting  a  number  is  preserved,  but  the  exact  value  is  removed.  However,  the  IOI  paper 
 mainly  tried  to  remove  information  about  selecting  the  correct  IO;  in  our  case,  that 
 appears  to  correspond  to  the  mean  dataset  containing  “sequential  information”. 
 Therefore, our split datasets would not perform the removal correctly. 

 But  the  IOI  paper  also  states  zero  ablation  can  lead  to  noisy  results;  therefore,  we  also 
 seek  to  choose  not  to  use  a  mean  ablation  from  a  dataset  that  was  too  dissimilar  to  the 
 main  dataset.  We  acknowledge  that  this  choice  of  a  mean  dataset  still  has  issues  (eg,  these 
 sequences  are  still  increasing  by  one,  and  perhaps  it  would  be  better  to  replace  the 
 numbers  by  some  other  non-increase-by-one  predictable  number  sequence  instead),  so 
 future  work  can  perform  more  rigorous  experiments  to  address  them.  Additionally,  as  we 
 did  not  allocate  enough  time  to  figure  out  which  token  positions  each  head  moves  to 
 during  this  study,  we  choose  to  keep  all  the  sequence  positions  for  the  circuit  heads  we  do 
 not  ablate.  Information  from  future  work  about  head  functionality  may  better  categorize 
 these heads and their connective topology. 

 To  check  that  our  re-arrangement  of  the  circuit  score  code  is  working  correctly,  we  test 
 the  code  on  a  circuit  that  contains  every  head.  This  results  in  scores  identical  to  the  full 
 circuit.  Additionally,  to  check  that  our  circuit  did  not  achieve  high  scores  on  every  input 
 (otherwise  it  would  not  be  specifically  geared  towards  continuing  sequences),  we  test  IOI 
 prompts  on  it.  This  results  in  low  scores.  Finally,  to  check  that  each  of  our  sequence 
 prompts  did  not  activate  highly  on  just  any  circuit,  we  plot  histograms  of  scores  obtained 
 from  running  the  sequence  prompts  on  randomly  chosen  circuits.  The  distribution  shows 
 that  it  is  unlikely  the  scores  come  from  random  chance  (N=20).  We  note  that  the  scores 
 appear  to  differ  slightly  each  new  restarted  run,  as  there  is  some  randomness  involved. 
 Thus, we focus on the relative comparison of each sub-circuit to the full circuit. 

 Digits  Words  Months 

 Full  4.6237  3.4230  6.8312 

 Top 10 Pos  3.0229  3.0253  6.0312 

 L0 to L9  2.2351  2.8218  6.0974 

 Only 9.1  1.5308  2.1130  4.1479 

 Random  µ=0.9, σ=0.4  µ=0.1, σ=0.4  µ=1.4, σ=0.8 

 Table 2a – Comparison of Average Logit Difference Scores for prompts (cols) run on 
 different mean-ablated circuits (rows). 
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 This  would  achieve  good  performance  if  the  mean  dataset  was  legitimate.  However,  it  is 
 still  plagued  by  several  issues:  there  are  too  few  samples  for  numwords  and  months.  Days 
 of the week did not have enough samples to split, and we did not run on alphabet. 

 Note  that  the  “Top  10  Pos”  heads  are  from  the  digits  column  in  Table  1.  Out  of  curiosity, 
 we  also  run  this  on  “All  Top  10”,  which  include  both  positive  and  negative  heads  in  the 
 top 10; these are given in the digits column in Appendix A. 

 All Top 10  2.7761  2.9044  6.2434 

 Mean ablation by the same dataset 
 We  find  that  using  mean  ablation  that  uses  the  same  dataset  achieves  very  high  scores, 
 albeit  these  scores  are  largely  inflated  by  information  that  was  not  removed,  so  we  do  not 
 consider  these  results  to  be  very  legitimate.  We  include  this  section  just  to  show  how 
 much  inflationary  effect  these  results  have,  and  we  mostly  run  these  results  out  of 
 curiosity,  like  throwing  various  objects  in  a  blender  to  see  what  would  happen.  A 
 difference from before is that the sequence position they are not ablated on is just <end>. 

 Digits  Words  Months  Days  Alphabet 

 Full  5.1332  2.6402  6.1420  2.4428  2.2813 

 Top 10  4.0804  2.6489  6.6191  2.4841  1.5980 

 L0 to L9  4.7670  2.3078  6.0295  2.1302  1.1679 

 Only 9.1  2.4358  1.5905  4.7845  1.6164  1.2870 

 Table 2b – Comparison of Average Logit Difference Scores for prompts (cols) run on 
 different mean-ablated circuits (rows) 

 Like  the  models  we  study,  we  seek  to  not  confuse  the  map  for  the  territory;  to  not  just 
 memorize,  but  to  generalize  well.  This  principle  is  useful  to  gradually  and  carefully  check 
 for mistakes, and to not overshoot with erroneous conclusions. 

 8.  Sub-Circuit Extraction and Surgery 

 This  section  is  only  done  out  of  fun  curiosity,  but  does  not  yield  rigorous  results.  Our 
 investigations  with  logit  lens  (nostalgebraist,  2020),  found  in  the  vector  addition  folder, 
 showed  that  the  model  obtains  the  correct  answer  at  L9.  Thus,  we  experiment  with  a 
 crude  method  to  obtain  new  models  by  removing  layers-  either  entire  blocks,  just 
 attention,  or  just  MLP-  and  stitching  together  the  remaining  layers.  These  experiments  are 
 found in the folder “extract_models”. Some of the observations that include: 

 ●  Using  only  9.1  or  MLP_9  does  not  produce  a  model  that  performs  sequence 
 continuation;  the  previous  layers  are  still  important,  likely  as  a  way  to  transform 
 the embeddings to a form that allows it to perform “sequence continuation” 

 ●  Omitting  L8,  attn9,  L10  to  L11  allows  the  model  to  even  better  on  “1  2  3  4”,  and 
 still do decently well on analogous sequences 

 ●  Other types of slice and stitchings allow it to still do well on other sequence types 
 What happens if the only attention heads we keep are the top attn heads L0 to L7? 
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 9.  Summary of Results 

 Main Positive Results: 
 ●  Analogous  consecutive  sequences  share  attention  heads,  and  perhaps  a  circuit; 

 even  if  there  are  issues  with  the  choice  of  ablation  for  ablation  experiments,  the 
 finding that they share attention heads suggest a commonality between them 

 ●  We  discover  attention  heads  that  appear  to  respond  to  moving  information 
 regarding  digits  and  months;  these  may  be  “number  detector”  and  “number 
 mover” heads 

 ●  There  exist  neurons,  albeit  polysemantic,  that  activate  on  numbers,  rankings, 
 months, and other analogous sequences 

 Other Takeaways for GPT-2 Small on sequence continuation: 
 ●  Token “Next” is highly ranked after the correct token for many sequence prompts 
 ●  Many  prompts  containing  only  two  consecutive  members  of  a  sequence  as  the 

 last two tokens will output the next member correctly 
 ●  The  model  is  able  to  continue  sequences  even  when  interspersed  with  other 

 tokens (albeit this may require an even spacing?) 
 ●  Capitalization  has  strange  effects  in  some  cases;  “One  is  1”  has  10.7  with  a 

 strong negative effect, while “one is 1” does not 

 Main Negative Results: 
 ●  We  did  not  locate  an  entire  circuit  with  good  faithfulness  (with  scores  close  to  the 

 full circuit) 
 ●  We  did  not  find  a  clear  way  to  get  from  digits  to  other  sequences  through  latent 

 space  addition  (a  lot  of  time  was  spent  on  this,  but  it  is  beyond  the  scope  of  this 
 project) 

 10.  Future Work and Conclusion 

 In  conclusion,  by  straightforwardly  applying  fundamental  interpretability  techniques,  we 
 find  that  consecutive  sequences  appear  to  share  common  activation  patterns;  whether  or 
 not  this  is  an  “abstract  circuit”  that  others  build  on  top  of  requires  further  testing.  We  also 
 seek to perform validation on early head functionality. 

 Given  that  we  can  represent  latent  spaces  using  neurons  as  bases  and  vectors  in  this  latent 
 space  are  linear  combinations  of  neurons,  we  can  say  that  some  of  these  vectors  are 
 features,  and  thus  features  correspond  to  directions.  Using  techniques  from  (Merullo  et 
 al.,  2023),  we  attempt  to  find  a  path,  through  vector  addition,  to  go  from  digits  to 
 numerical  words,  or  a  general  “next”  direction  to  go  from  a  vector  to  its  next  element  in  a 
 sequence.  These  paths  were  not  found  during  this  study,  implying  that  the  problem  may 
 be more complex than simple vector addition, so this work may be continued later. 

 Some  more  prompts  to  test  include:  Sequences  of  different  lengths  (incr  just  attends  to 
 last  2)  decreasing  sequences,  sequences  that  depend  on  attending  further  back  (eg. 
 fibonacci),  and  interspersing  non-numbers  in  less  structured  patterns  than  “X  is  Y”.  Many 
 of  these  prompts  were  not  tested  as  GPT-2  Small  was  incapable  of  predicting  their  next 
 member correctly. 

 Other  techniques  to  apply  include  ROME  (Meng  et  al.,  2022),  ACDC  (Conmy  et  al., 
 2023), and Neuron to Graph (Foote et al., 2023). 
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 12.  APPENDIX A– Top Heads Results (Positive and Negative) 

 Digits  NumWords 

 9.1: 0.21 
 0.10: -0.14 
 5.5: -0.10 
 7.11: -0.08 
 7.10: 0.06 
 4.4: -0.06 
 10.7: 0.04 
 8.8: 0.04 
 0.1: 0.03 
 3.0: -0.03 

 9.1: 0.30 
 0.10: -0.07 
 5.5: -0.06 
 0.1: 0.05 
 8.8: 0.05 
 7.10: 0.04 
 6.1: 0.04 
 6.10: -0.03 
 3.0: -0.03 
 0.5: 0.03 

 N/A  6.1, 6.10, 0.5 

 Table 1 - Top Attention heads and normalized patched logit difference for digit and 
 number word input types. Last row: heads of that column’s top heads that differ from the 

 digit’s top heads 

 13.  APPENDIX B– Postponed Project Plan 

 One  idea  we  sought  to  investigate  further,  but  did  not  have  time,  was  automating  analysis 
 (which  is  likely  already  an  endeavor  several  are  tackling).  By  using  the  current 
 definitions  of  head  functions,  it  may  be  possible  to  automate  a  pipeline  of  the  analysis  of 
 identifying  head  functions  and  placing  them  in  a  possible  circuit.  One  way  this  can  be 
 done  is  by  checking  attention  patterns  of  important  heads  found  by  activation  patching  to 
 see  what  tokens  attend  to  what  tokens.  For  instance,  a  head  with  tokens  that  attends  to  the 
 same  token  much  more  than  others  may  be  considered  a  “duplicate  detector”,  and  those 
 that  attend  to  the  “same  type”  may  be  considered  a  “<type>  detector”.  The  "semantic 
 similarity"  of  tokens  in  terms  of  a  <type>  may  be  measured  by  the  cosine  similarity  of 
 their  token  embeddings,  or  by  asking  chatgpt  after  providing  it  with  in-context  examples 
 of  head  functions  or  circuits.  If  a  <type>  appears  in  common  to  most  of  the  tokens  being 
 strongly  attended  to,  the  algorithm  would  denote  this  as  a  <type>  detector  category.  The 
 composition  of  heads  relative  to  others  can  also  be  taken  into  account  to  determine  head 
 function  categories.  Once  a  head  is  placed  in  a  head  function  category,  we  can  input  a  set 
 of  head  function  sets  as  a  candidate  circuit  to  minimal  model  ablation.  Of  course,  this 
 analysis  automation  may  have  obvious  false  positives  or  negatives  that  can  be  caught  by  a 
 human researcher’s checks. Thus, we only regard it as a starting point. 
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