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Abstract

This paper presents a methodology for the experimental verification of the residual
stream as shared bandwidth hypothesis in neural networks. The hypothesis posits
that the residual stream in a neural network carries information not captured by the
lower layers, thereby acting as a shared bandwidth. The verification involves several
steps, from identification of the residual stream to the experimental verification
of the hypothesis. We use the SHAP (SHapley Additive exPlanations) library to
interpret our models.

This report was written for the s case of the AI interpretability hackathon.

Figure 1: Image showing how the ReLU function works. The ReLU function is an acti-
vation function that outputs the input directly if it is positive, otherwise, it outputs zero.
It has been widely used in the deep learning field.

1 Introduction

The residual stream in neural networks has gained substantial interest in recent years
due to its potential implications for the design and optimization of these models. The
hypothesis that the residual stream serves as a shared bandwidth posits that it carries in-
formation not captured by the lower layers of the network. Understanding this mechanism
can potentially lead to more efficient network designs and improved model performance.
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2 Background

In the context of transformer models, a subspace is a subset of the total space in which the
model operates. The transformer model operates in multiple subspaces simultaneously,
each of which is responsible for a different aspect of the model’s operation. The concept
of ”residual stream bandwidth” describes the capacity of the residual connections in a
transformer model to carry information. The limited residual stream bandwidth forces
the model to make trade-offs between different subspaces. If one subspace becomes too
dominant, it can ”crowd out” other subspaces, reducing the model’s overall performance.
Understanding the interplay between subspaces and residual stream bandwidth can help
to make transformer models more interpretable.

3 Methodology

Our experimental approach was designed to verify the residual stream as shared band-
width hypothesis. We defined and trained two models: one with a residual stream and
one without, monitoring their performance on a test set during training. The shared
bandwidth hypothesis was experimentally verified by comparing the performance of these
two models.

3.1 Identification of the Residual Stream

The first step in our methodology involved identifying the residual stream in the neural
network model. This stream, which allows information to bypass certain layers and flow
directly to later layers, is key to our hypothesis.

3.2 Subspace Projection

In the subspace projection step, the residual stream was projected onto the subspace
spanned by the lower layer’s output. This is represented by the following equation:

projsubspace(residual stream) =
⟨residual stream, subspace⟩

∥subspace∥2
· subspace

3.3 Bandwidth Measurement

Next, the bandwidth of the residual stream was measured by its variance. A high variance
indicates that the residual stream carries a significant amount of information. This is
represented by the following equation:

Bandwidth = Var(residual stream)

3.4 Experimental Verification

Finally, the shared bandwidth hypothesis was experimentally verified by comparing the
performance of a model with a residual stream to one without. The differential perfor-
mance provided evidence supporting the hypothesis.
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4 Results

Following training, we compared the performance of the two models on the test set using
the mean squared error. The lower the mean squared error, the better the model’s perfor-
mance. Furthermore, we utilized the SHAP library to interpret our models and generate
SHAP values. These values provided valuable insights into the decision-making process
of the models and the importance of different features.

Figure 2: Image describing how the SHAP model works.

The SHAP values are computed as follows: ϕi(f) =
∑

S⊆N\{i}
|S|!(|N |−|S|−1)!

|N |! [f(S ∪
{i})− f(S)] , where f is the model, x is an instance, S is a subset of the features, |S| is
the number of features in S, xS is the instance x restricted to the features in S, xS is the
instance x restricted to the features not in S, and ϕi is the SHAP value for feature i

Figure 3: SHAP values for the sample by similarity.

5 Discussion

The results of our study provide insights into the role of the residual stream in neural
networks. The model with the residual connection performed slightly better, suggesting
the effectiveness of the residual connection. However, the performance difference was rel-
atively small, potentially due to various factors including the complexity of the model,
the nature of the data, and the specific task the model was used for. The SHAP val-
ues indicated that certain features had a particularly significant impact on the model’s
predictions, highlighting the importance of these features.

3



Figure 4: Figure showing the impact on model output magnitude.

6 Conclusion

This study presented a methodology for experimentally verifying the residual stream as
shared bandwidth hypothesis in neural networks. The limited time frame of less than 24
hours for this project, due to its nature as a hackathon submission, means that there is
considerable scope for further exploration and refinement of the methodology and analysis
and more datasets to test the problems.

The results of our study provide insights into the role of the residual stream in neural
networks. The model with the residual connection performed slightly better. However, the
performance difference was relatively small, which was actually no statistically significant.

7 Discussion and Future Work

Moreover, the conclusions drawn from this study are based on a single dataset. While
this provides a preliminary understanding, it is not sufficient to generalize the findings.
Different datasets may have different characteristics and may interact with the model in
different ways. Therefore, to strengthen the validity of our findings, it is crucial to test
the hypothesis using multiple datasets.

In future work, we plan to conduct more extensive experiments using a variety of
datasets. This will allow us to better understand the conditions under which the residual
stream acts as a shared bandwidth and its impact on model performance. We also plan
to explore other methods of interpreting and visualizing the decision-making process of
the models, which could provide additional insights into the role of the residual stream.

8 Code

The Jupyter notebook containing the code for this analysis can be found at the following
link: https://github.com/jonathanbff/Hackas/blob/main/Experimental_Verification_
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