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Abstract
We search for circuits within GPT2-small that could be responsible for
informing a position about whether it is inside a bracketed sequence.
We find that the current position does not need to attend directly to an
opening bracket in order to accurately predict when it should close a
bracket. Further experiments show that no precisely identifiable circuit
seems to be responsible for this behaviour and we find increasing
evidence to suggest that information to perform this task is highly
distributed across the network. We are aware of the limitations posed by
existing techniques for investigating this behaviour and highlight the
development of these as important if more progress is to be made in
understanding model behaviour such as this.

1. Introduction

Large Language Models (LLMs) are typically based on the transformer (Vaswani et al.
2017) and are trained to predict the next token. In most cases, predicting the next token
requires understanding information from earlier context and Transformers are able to do
this through the attention mechanism. The precise mechanisms for how this transfer takes
place and where information corresponding to particular features of language is stored is
generally poorly understood, prompting the conclusion that LLMs are a black box that we
will never understand.

Although we are only scratching the surface, there is building evidence to suggest that
there are precise circuits which implement specific algorithms (e.g. modular addition,
Nanda et al. 2023). Most circuits have been identified in toy models but some progress
has been made on larger, “wild” circuits which were not trained specifically for
interpretability research (Wang et al. 2022).

We carried out Mechanistic Interpretability work into GPT2-small using
TransformerLens2. Code for all experiments is made available3.

1 Research conducted at the Apart Research Alignment Jam #10 (Interpretability 3.0), 2023 (see
https://alignmentjam.com/jam/interpretability)
2 TransformerLens library: https://neelnanda-io.github.io/TransformerLens
3 Code for all experiments:
https://colab.research.google.com/drive/1WftRKjZ5sbbVV_RfiNbo56zAeJZH0S5m#scrollTo=HevV45yEeE
FP
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Motivated by the study of precisely how LLMs are able to monitor a particular “state” as
a sequence progresses, we investigated the use of brackets and how the model is able to
monitor whether it is inside or outside parentheses.

Despite tackling this problem from a number of angles, we did not find significant
evidence of a circuit responsible for this behaviour and instead found some evidence
pointing to information about bracket location being highly distributed throughout the
network. However, we are also acutely aware of the limitations in tooling available to
locate such networks, and highlight this as a matter of importance for future research
agendas.

We remain optimistic that, with more work of this nature, progress can be made towards
understanding this and more complex phenomena within LLMs which may ultimately
help address issues such as truthfulness.

2. Results
Our main aim is to identify the circuit responsible for detecting whether the current
position is located inside or outside parentheses. However, it is not possible to assess this
directly and so we use a proxy for this concept: the likelihood assigned to predicting a
")". We hypothesise that the model needs to keep track of the concept of "inside vs
outside of parentheses" to perform this task accurately.

Our general approach is to identify combinations of heads that correlate strongly with this
proxy and then, once isolated, to reason more concretely and reconstruct the algorithm
which might be implemented.

2.1 Splitting the sequence
We predict that, for a head responsible for this behaviour, we should see tokens up to and
including the closing bracket attend much more strongly to the opening bracket than
tokens after the closing bracket. Our initial pass identified (Head 3, Layer 10) and (Head
5, Layer 2) as the most promising candidates.

Figure 1 – Comparing the attention shown to the opening bracket by positions before and
after the closing bracket. Left: random sequences, Right: real sentences
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We reason that the arguments for and against closing a bracket mostly depend on the
actual content of the text rather than just the question of whether a bracket has been
opened. To see whether the same heads still show the same behaviour we let GPT-4
generate 27 sentences that contain a bracket and run the same experiment again. We
expected to see much more noise since analysing the actual content of the sentences for
whether a bracket should be closed probably requires much more circuitry than just one
or two heads. Surprisingly, the results remain pretty consistent with head 5 of layer 2 and
to a lesser degree head 3 of layer 10 being the most active.

This initially seems quite promising. However, there are a number of reasons why a token
might want to attend to "(" when it's inside rather than outside of parentheses (e.g.
judging phrase length) and so this is a long way from proving a causal relationship.

Indeed, we found no further evidence of these heads being responsible for this behaviour
and remain unsure as to why these heads might be highlighted in this situation.

2.2 Activation Patching
Activation patching allows for a more surgical and fine grained approach to locating
target heads. We first generate a prompt that predicts ")" at the final position and then
investigate patching attention values to -inf to prevent the final token from attending back
to the "(" position.

Results

1. We found that patching the relevant value in a single head made no difference to
the overall probability.

2. We even found that patching every single head for this particular value made
little difference.

3. Blocking any future tokens from attending to the "(" does prevent ")" from being
predicted (sanity check).

4. Gradually patching more layers and positions does not yield a sudden change in
probability at any point.

We conclude that information about the open bracket is passed to the final position
progressively through other positions rather than exclusively attending to the "(" and that
this process seems highly distributed across layers.

Figure 2 – Output probability when all heads in the final position are patched for a
specific source token
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Figure 3 – Output probability when all heads in subsequent positions are patched for a
specific source token

Figure 4 – Output probability when gradually increasing activation patching for the “(“
source token along the position and layer dimensions. Bottom left: all subsequent

positions are patched but no layers. Top right: only ‘milk’ is patched but for all 12 layers.

2.3 Single token predictions
In a bid to simplify the problem and gain more traction, the sequence following the
opening bracket was shortened to a single character (i.e. what is the probability of
predicting ")" one after "(", for example "(a)" would be a valid string).

This reduces the complexity of the problem but is less closely connected to the typical
behaviour we are studying, something we address later on.

Methodology

1. A random string was used so as to decrease the chance of other relational
information influencing activations (though this seemed to make little
difference).

2. An inverse string, replacing " )" with "(", was used to generate activations for
patching. This is a more realistic method for 'undoing' an activation than simply
setting it to zero.

3. Carry out similar activation patching, but this time with fewer positions to worry
about.
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Results

1. Patching the attention output in the first 3 layers is enough to reduce the
likelihood of predicting ")" to almost 0

2. Patching the second layer by itself was not enough to cause this behaviour: it
needs to be combined with either layer 0 or layer 1

3. Ablating this result across all head combinations shows a particularly strong
correlation between patching layer 1, head 5 and layer 2, head 1.

These last two results patched the value activations rather than the attention output

Figure 5 – Left: patching the attention output in all layers up to and including the cutoff
layer. Right: ablating this for all pair combinations for the first three layers.

Figure 6 – Further ablations on pairs of heads. Left: layers 0 and 2. Right: layers 1 and 2

This result initially indicates that a combination of two heads (layer 1, head 5 and layer 2,
head 1) correlates with reducing the probability of outputting a ")" when the preceding "
(" is replaced with a ")". We came up with a number of hypotheses for what this "circuit"
of two heads might be doing:

1. The circuit is spurious and does not generalise beyond this exact example
2. The circuit is responsible for the very precise task of predicting a " )"

immediately after a " (" but does not generalise beyond that.
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3. The circuit is predicting that a ")" should not follow another ")" and is showing
up here because we are patching with ")".

4. The circuit is responsible for the more general behaviour of detecting whether the
current position is inside or outside parentheses

5. This circuit represents a general understanding of being “inside a bracket” and is
also able to map that behaviour to other types of brackets e.g. [], {} or <>

We then made a number of switches to the original and inverse prompts to test these
hypotheses.

Results:

1. Inverting the prompts (i.e. patching " (" over ")") causes the inverse behaviour as
expected: the two heads we are interested in correlate with a much higher
probability of predicting ")" next.

2. Altering earlier parts of the sequence or the final token does not cause any
noticeable difference in output distribution.

3. Patching " (" with a token other than ")" (i.e. a random word) does NOT yield the
same pattern. Indeed sometimes it increases the probability of outputting a ")"

4. If we then start with ")" in the main sequence and patch with a random token we
see no correlation to the particular head in question.

5. Repeating the original experiment but with square brackets as opposed to round
brackets breaks the pattern, indicating that this does not generalise to other forms
of "openness".

Further experiments, similar to the ones above, were carried out with square braces to
identify whether the same layers (0,1,2) were responsible for this behaviour and if there
was any correlation. For square braces, the third layer also seemed to be important and
there was no 3 way combination of any 3 heads in the first 3 layers that seemed to
correlate with reducing the probability of predicting a ")" (see result below).

These results indicate that the circuit is more closely related to detecting a closing bracket
than an opening one, but even this is not concrete. It certainly does not generalise to other
brackets. Whilst this might be something worth investigating it does not seem to
represent the idea of "being inside/outside parentheses".

2.4 Averaging Activations
The methodology used above did not seem to isolate the intended behaviour. This may be
because it is quite unusual to want to predict a closed bracket straight after an open
bracket and does not represent a realistic scenario in which the circuit needs to judge
whether it is inside or outside parentheses. We therefore reverted back to using longer
sequences but opted to average the activations across samples in the hope of isolating a
more reliable signal.

All prompts are similar to the following example and are adapted from our earlier GPT4
prompts:

"The main house (once grand and very elegant"

The model assigns the highest probability of a ")" to the next token for all samples and
they are all of the same token length and have the open parenthesis in the same location.
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We used the following hypothesis of how the model might approach this task to guide us:

1. Does the previous token(s) indicate that this might be a new clause?
2. If yes --> "("
3. If no: am I inside a bracketed string?
4. If no --> predict random token
5. If yes: does it make sense to close the bracket given the current context?
6. If yes --> ")"
7. If no --> predict random token

It is the third step that we are looking to isolate and locate the circuit for.

Methodology

Obtain a set of averaged activations:

1. Run a forward pass and save out the cache for each sequence.
2. Repeat but replace " (" with " ". These will represent the inverse sequences.
3. Average all activations for the standard sequences and the inverse sequences.
4. Confirm that the averaged activations have the desired behaviour.
5. Compare the cosine similarity of incoming keys and values, as well as the output

of each attention layer.
6. Repeat some of the earlier patching experiments but this time with the averaged

values

Cosine Similarity

Results

1. Most differences in cosine similarity occur for keys originating from the " ("
token as you would expect but there are still clear differences in some of the
other tokens which implies that information about the bracket can be passed
indirectly through the network and the current position does not have to rely on
attending directly to the " (", which corroborates what we have found previously.

2. Ablating the cosine similarity across heads for keys and values originating from
the "(" position shows a lot of variation but there is nothing linking this to
predicting ")" at the current position.

3. Plotting the cosine similarity for the "z" activations of every head shows a
gradual decrease in similarity as the layers increase. It is likely just the case that,
as we proceed through the network, there is more of an opportunity to attend to
information from the changed token and so we see progressively more difference
as we move through the layers. Relative difference within the same layer is
therefore likely more of an indicator.

Whilst cosine similarity plots are interesting they do not link directly to the likelihood of
outputting a close bracket. It is therefore difficult to read too much into these results.
However, combined with other information from activation patching they could be
informative.
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Figure 7 – Cosine similarities between the normal and inverted activations for keys (left)
and values (right) by layer and position for the final position. The 0th position refers to

the location of “(“

Figure 8 – Cosine similarities between the normal and inverted activations for keys (left)
and values (right) by layer and head, for the final position attending to the position of the

“(“ token.

Figure 9 – Cosine similarities between the normal and inverted activations for the “z”
activations in the attention layer for the final position attending to the position of the “(“

token.
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Activation Patching

Methodology:

1. Take a sample sequence at random and always patch the very first residual with
the standard average to negate the input.

2. Patch the key and value activations in every layer as this covers all of the
activations that the final position is able to use to attend to prior information

3. Iterate over different layers - sometimes patching with the standard average and
sometimes with the inverted average to identify if there are any layers/heads
which correlate strongly with predicting a ")"

Results: Sweeping over individual layers or blocks of layers yielded no clear layers or
heads that might be responsible. A greedy search was performed, gradually increasing the
number of layers that are patched, to identify which layers are most important, and this
indicates the latter layers. However, blocking out the final few layers yields only a
gradual decrease in likelihood.

3. Discussion

Our experiments found no substantial evidence of a specific circuit dedicated to
identifying whether the current position is inside or outside of a bracketed sequence.
There are a number of possible reasons for this which are addressed in turn below.

1. Predicting a closing bracket is a bad proxy

Throughout these experiments we have used the probability of predicting a ")" as a proxy
for whether the model believes it is inside or outside of parentheses, based on the idea
that it is unlikely to assign high probability to ")" if it is not inside parentheses.

We have already indicated that predicting a ")" straight after " (" does not represent most
situations where it is important to keep track of this across a sequence.

We have tried longer sequences with both random sequences (to isolate bracket
behaviour) and realistic sequences (to better simulate real situations).

The last effort, involving averaging realistic sequences, attempts to tie both of these
together: both representing realistic sentences and averaging out some of the noise you
might expect from them.

However, compared to Indirect Object Identification, where predicting the correct token
is a very clear indicator of whether the model possesses this concept, the present task is
less tangible and proxies are harder to come by.

There are many concepts which suffer from the same issue and further work is necessary
to identify better methods or proxies for eliciting their behaviour.

2. The model does not possess or need this concept

This is a difficult question to answer and depends slightly on definitions. On the one
hand, it is clear that GPT2-small is very accurate when it comes to placing brackets in the
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correct place. On some level it clearly possesses the ability to know when it needs to add
a ")". If the only thing this depends on is whether there is a "(" earlier in the sequence
then it must be using that information when making its prediction.

Even if the model does not have the concept of "am I inside a bracketed sequence?", it
must have a related concept, e.g. "is there a ')' more recently than a '(' in the preceding
sequence?".

In essence this issue cancels out the first point regarding proxies. We are attempting to
locate whatever 'concept' it is that allows the model to correctly predict a closing bracket.

If we accept that the concept is poorly defined but nevertheless present then the proxy
ceases to be a poor one.

3. Our methodologies are flawed/limited

We have already discussed the potential issues with our choice of proxy for this
behaviour. However, the techniques used to try to isolate this behaviour are definitely
limited. It is not feasible to exhaustively search all possible combinations of heads to
isolate this behaviour.

4. The circuit responsible for this concept is highly distributed

We have painstakingly isolated parts of the network to attempt to identify this behaviour
and no highly reduced combination of layers/heads has been found that is clearly
responsible.

There are broad combinations of layers that seem to be of more importance than others
but nothing fine grained.

The slightly different problem of predicting the sequence "()" seems to be more easy to
isolate but does not seem to correlate to the more general problem of predicting closed
brackets later in a sequence.

With the tools and methods currently available to us, we are left to conclude that this
concept is simply highly distributed throughout the network. This aligns with the fact that
preventing the final token from attending to "(" is not enough to prevent a ")" from being
predicted, indicating that this information is passed gradually through the network.

However, we are reluctant to conclude this definitively and the main takeaway from our
work should be that there is still much work to be done to improve methods and
techniques for identifying circuits within models.
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