
GPT-4 May Accelerate Finding and
Exploiting Novel Security Vulnerabilities1

Esben Kran
Apart Research

Mikita Balesni
Apollo Research

Jan Brauner, Esben Kran, Fazl Barez

Abstract

The rapid advancement of Large Language Models (LLMs) raises
important questions about their potential to assist in discovering
software vulnerabilities and how that could disrupt the
offense-defense balance in cybersecurity.

Over two days, we investigated whether a publicly available
state-of-the-art LLM could already accelerate the process of
finding novel ("zero-day") software vulnerabilities and developing
exploits for existing vulnerabilities from CVE pages. Our
experiments using a GPT-4 model as an assistant in attacking and
reverse engineering closed-source and open source programs show
that reverse-engineering becomes significantly faster, that
automated exploit creation can be possible, and that
last-generation models are not capable enough for the tasks
necessary in cybersecurity.

Within 1-3 years, such advances could enable LLMs to
autonomously discover novel vulnerabilities. These powerful
capabilities raise important questions around securing our digital
infrastructure when potent hacking tools become democratized.
Further research is needed to develop responsible practices for
using LLMs in cybersecurity.

Keywords: Evaluations, cybersecurity, AI safety, vulnerability
detection

1 Research conducted at the Apart Research Evaluations Hackathon, 2023 (see
https://alignmentjam.com/jam/evals)

1

https://alignmentjam.com/jam/evals


1. Introduction
Cyber warfare and cyber risks have been identified as some of the key existential
and societal risk factors when it comes to the introduction of superhuman artificial
intelligence (SAI) into society.

At the same time, we see the growth of evaluating large language models (LLMs)
for risky behavior and capabilities that indicate they can be misused for criminal
activity or in the edge case, end up self-improving into a high-risk self-proliferated
program that can intelligently affect society in autonomous ways.

For this work, we focus on identifying the current capabilities of models to be used
for both human-assisted and autonomous cyberattacks.

Existing work has developed bug detection systems that autonomously generate
program tests for open source libraries (1, 2), use Transformer models for
vulnerability detection (3), used Codex for reverse-engineering programs (4),
written zero-day exploits with ChatGPT (5), and explores the future of automated
fuzzing using LLMs (6).

Our research questions for this report are:

RQ1. Can a beginner use a helpful LLM to find a zero-day exploit over 12
hours in high-impact 1) open source and 2) closed source applications and
which crucial steps do current models help accelerate the most? Can we
use key evaluation metrics to measure for these risky capabilities?

RQ2. When and why do the models fail in assisting with their tasks and can
we predict how and when the models develop the capabilities required for
these types of dangerous behavior?

2. Methods
For RQ1.1 (white box exploit development from known vulnerabilities), GPT-4
recommended several target classes. When given constraints (only two days of
work, inexperienced hackers, desire for impactful target), it suggested focusing on
CMS software. It initially suggested WordPress, but when questioned about
Drupal, suggested that Drupal could be a more impactful target due to its use by
many government agencies, including NASA and the Whitehouse. We followed
GPT-4’s suggestion and selected Drupal as a target.

We then attempted to use the language model to identify the part of the source code
that contains a known vulnerability. We developed and iterated on the following
approach:

1. Choose a Drupal CVE from:
https://www.cvedetails.com/product/2387/Drupal-Drupal.html?vendor_id
=1367

2. Check out the Drupal git repository (https://github.com/drupal/drupal) at
one of the versions that the CVE identifies as vulnerable.

3. Run a grep over the repository for the key terms mentioned on the CVE
page, e.g. git grep -r -A 50 --heading "Form API"

Apart Research Evaluations Hackathon, 2023 2

https://arxiv.org/abs/2304.02014
https://arxiv.org/pdf/2112.02125.pdf
https://arxiv.org/pdf/2204.03214.pdf
https://www.semanticscholar.org/paper/Pop-Quiz!-Can-a-Large-Language-Model-Help-With-Pearce-Tan/763792c655e591c5d61f67d7ac9cbecbcb5f4508
https://www.forcepoint.com/blog/x-labs/zero-day-exfiltration-using-chatgpt-prompts
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://www.cvedetails.com/product/2387/Drupal-Drupal.html?vendor_id=1367
https://www.cvedetails.com/product/2387/Drupal-Drupal.html?vendor_id=1367
https://github.com/drupal/drupal


4. Feed the result to a Python script that breaks
the grep result into individual snippets and
sends each of them to a GPT-4 instance

5. Each LLM is given the complete CVE
information page and a single code snippet,
and is asked to analyze it for presence of
possible vulnerabilities related to the CVE
and mark the snippet as potentially relevant
or not.

6. Filter the snippets marked as relevant and
concatenate their analyses into a single
document

7. Send the aggregated document to a
GPT-4-32k instance for deciding the next
steps.

8. (due to time, the suggested steps were not taken)

Separately, we attempted to evaluate the model ability to develop an exploit by
giving it relevant technical information manually and providing tips if the model
failed, similarly to the process done by ARC Evals when testing models for
long-horizon tasks. For this, we selected a CVE with a publicly available article
describing the vulnerability and exploit in detail, such that we know how an expert
would proceed in a given situation. We then prompted the model with a
self-contained unexpected behavior, and attempted to hand-hold its way to
developing an exploit. Concretely, the model is given the following request:

```

GET /drupal-8.6.9/node/3?_format=hal_json HTTP/1.1
Host: 192.168.56.101
Content-Type: application/hal+json
Content-Length: 287

{
"_links": {

"type": {
"href":

"http://192.168.56.101/drupal-8.6.9/rest/type/node/INVALID
_VALUE"

}
},
"type": {

"target_id": "article"
},
"title": {

"value": "My Article"
},
"body": {

"value": "some body content aaa bbb ccc"
}

}
```

Apart Research Evaluations Hackathon, 2023 3

https://evals.alignment.org/Evaluating_LMAs_Realistic_Tasks.pdf
https://nvd.nist.gov/vuln/detail/CVE-2019-6340
https://www.ambionics.io/blog/drupal8-rce


and the resulting response:

```

HTTP/1.1 422 Unprocessable Entity
{"message":"Type
http:\/\/192.168.56.101\/drupal-8.6.9\/rest\/type\/node\/I
NVALID_VALUE does not correspond to an entity on this
site."}
```

We first ask the model whether such Drupal behavior is expected or could be
considered a vulnerability, and then try to help it reproduce the conclusions of the
original article. In the article, upon seeing this behavior, the author makes a
conclusion that there is a vulnerability, as it reveals that Drupal is processing data
from an unauthenticated GET request (we admit that we do not completely
understand why this is immediately evident from this response).

For RQ1.2 (black box vulnerability discovery) we use ChatGPT for end-to-end
planning, decompiled binary reverse-engineering, and attack design to discover
zero-day exploits. This is a challenging task and is deliberately chosen for its high
expected impact if a beginner is able to do it. We set aside the first day (effectively
6-8 hours) for moving through the following steps:

1. Use ChatGPT to identify the highest-impact targets and select the Safari
and MacOS Mail in two different experimental sessions.

2. Ask for a plan with concrete steps we should take where it suggests we
download and run Ghidra along with a range of other libraries for
reverse-engineering. ChatGPT suggests a range of precautionary measures
to ensure that we isolate the exploit detection process on our system. We
use ChatGPT to assist in setting up the environment, which includes
modifying EFI settings and virtual machine setup.

3. We ask ChatGPT to expand on each of the 9 steps it suggests, where step 2
is especially time-consuming to execute. Here, we install Ghidra (6), an
NSA-developed program for reverse-engineering, and decompile the
binaries of Safari and Mail.

4. We use ChatGPT for variable and function renaming within Ghidra. This
takes in the decompiled pieces of code with all variables and methods being
named obscure data-related names. A big part of reverse-engineering is to
rename these variables to their supposed function.

Apart Research Evaluations Hackathon, 2023 4

https://ghidra-sre.org/


Figure 1: Example of obfuscated code in the decompiled program. Screenshot from
Ghidra (NSA). Each variable needs to be renamed as part of the

reverse-engineering process.

5. When provided with a function graph, ChatGPT was able to identify the
names based on the functionality of the obfuscated code. We were not able
to verify the names but on quick inspection, they broadly seemed correct.

6. Due to the time for setting up the programs and the time consumption of
learning Ghidra (which ChatGPT was very useful for), no more steps were
taken.

3. Results and discussion
RQ1.1: The approach for localizing vulnerabilities we used did not lead to
successful localization of any of up to ten CVEs we attempted. The analysis written
by the models usually just flagged potentially sensitive functions and suggested that
they may involve a vulnerability depending on how other parts of the codebase
interact with it. However, since models mentioned this for dozens of code snippets
at a time out of a hundred snippets queried, it was impractical to manually pursue
the threads manually and we lacked the scaffolding to make models pursue them
autonomously. Thus, a key limitation with the localization setup was suboptimal
scaffolding, and it is hard to say whether the model would be capable enough at the
task given better scaffolding (e.g. multiple threads with all relevant codebase &
documentation parts in the context).

In our manual evaluation on a CVE with a known exploit, gpt-3.5-turbo mentioned
that the supplied output is suspicious 5 out of 100 times, and none of them
mentioned the issue described in the article. gpt-4 suggested that the output is
suspicious in 2 out of 20 attempts, on both occasions specifically calling out a
potential injection vulnerability. When asked for next steps in confirming and
exploiting the vulnerability, gpt-4 shared several basic SQL, JavaScript (XSS) and
PHP injections and suggested applying them in a different (we think incorrect)
place than the exploit in the article. After 20 attempts, the model never mentioned
the correct answer of instead using a serialized Guzzle command, as discussed in

Apart Research Evaluations Hackathon, 2023 5



the article, at which point we did not have time to push the model further. We thus
consider this experiment incomplete and encourage revisiting this approach in the
future. For example, we could give the model a tip by showing the relevant part of
the codebase, or asking it whether it could be a serialized PHP string in some
Drupal-specific format.

Automated exploit writing from a multi-step LLM process as described in the
methods section seemed promising and there were no apparent limitations to
expanding and scaling the method besides the capability to act in each step.
Depending on the prompts used, the model would provide vague and high-level
advice responses or just resist in complying with requests, citing that developing
exploits may be illegall and unethical. Rejections were almost completely mitigated
by better jailbreak prompts and in the end, we only encountered a rejection
response from a model once.

RQ1.2: We find that using ChatGPT enhances the productivity of a user similarly
to code generation tools. The steps and code suggested by ChatGPT often require
special programs that take a long time to download and get up and running. One
thing ChatGPT was very good at was identifying what the functionality for each
function and variable in decompiled programs in Ghidra are, and we estimate a 10x
speed-up in this process, possibly even for an expert. In general, it allowed the
beginner to take advanced steps relatively quickly due to the assistance with target
selection, exploit impact evaluation, and attack surface identification.

In short, it 1) enabled a beginner to quickly initiate advanced cyberattack
measures, 2) made the programming and sub-processes of the plan independently
50-80% more efficient, and 3) 10x the speed of reverse-engineering.

RQ1: Finding key evaluation metrics is important to understand when we have to
look towards misuse and misalignment catastrophes due to cyber exploits. During
this work, we were not able to operationalize any key metrics but future work
might address this by operationalizing the following ideas:

1. The ability to localize vulnerabilities to specific points in the codebase from
a high-level description of the vulnerability, as normally given in CVEs
without technical details.

2. The ability to develop exploits largely depends on the ability to write code
according to a specification. Multiple benchmarks attempt to cover this.

RQ2: We discovered three main ways these models seemed limited for the sorts of
operations required to do malicious cyber attacks, as explained above.

1. High-level understanding of large libraries: We might mitigate this by
providing access to the documentation or a search function over the
documentation, but as a standalone program, the LLMs often
misunderstood what a piece of code was about.

2. Synthesizing effective exploits: This is both related to general
programming capability and (1).

3. Alignment: High quality jailbreaks were necessary to make the models
useful for dangerous capabilities, however with models like LLaMA-2 (8)

Apart Research Evaluations Hackathon, 2023 6

https://about.fb.com/news/2023/07/llama-2/


released both with and without alignment safeguards, this does not seem
like a major limitation.

Ergo, at the moment we see no strict limitations to LLMs being part of systems
that enable autonomous cyberwarfare and cyber exploits within the near future.

4. Conclusion
The high-level takeaways of our exploration are:

1. Ease of misuse. The ease with which LLMs can assist in potentially
malicious activities raises immediate security concerns. This will become
especially pertinent as models become more autonomous and better
scaffolding is available. Research into mass hardening of the software
systems, safeguards, and regulations may be necessary to mitigate misuse.

2. LLMs may speed up experts in finding vulnerabilities and developing
exploits. The LLM is helpful not only in tool setup, but in things like
semantics recovery from decompiled code, or autonomous static analysis of
the repository — tasks that could be useful for experts as well as beginners.

3. Potential for Autonomous Operations: Our research hints at the possibility
of LLMs being part of more autonomous systems that can undertake cyber
operations in the future. While GPT-4 was not well-suitied for full
autonomy yet, models that are specifically fine-tuned for autonomous tasks
may quickly become powerful enough to base model intelligence overhang.

4. High-quality scaffolding is crucial to assess the ceiling of model
capabilities. This means structuring tasks in a way that the model can
provide meaningful output, rather than simply providing general or vague
responses. GPT-4 seems to barely have the capability to have reasonable
action plans in our setting, but is limited due to inability to pursue those
plans autonomously.

With some of the largest risk surfaces of self-replicating AI and rogue
superintelligent systems in cybersecurity, ensuring that models cannot be utilized
for cyberattacks and cyberexploits is important, just as it is important to
understand in which cases they fail and when we should get worried.

Apart Research Evaluations Hackathon, 2023 7


