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Abstract

The new visual capabilities of LLM multiply the possible use cases
but also embed new vulnerabilities. Visual Prompt Injection, the
ability to send instructions using images, could be detrimental to
the model end users. In this work, we propose to explore the
Optical Character Recognition capabilities of a Visual Assistant
based on the model LLaVA [1,2]. This work outlines different
attacks that can be conducted using corrupted images. We leverage
a metric in the embedding space that could be used to identify and
differentiate OCR from object detection.
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1. Introduction
1.1. Context

Recent advancements with multimodal LLMs have shown that they can be trained
to understand images and include this modality to answer user requests more
accurately. Yet, with these advancements, new potential risks rose. Models like
GPT-4V [18] and others have been proven vulnerable to hidden messages
embedded in an image. The idea of this exploit is to write text on an image invisible
to the human eye using well-designed colours and contrasts.

Figure 1 presents a practical example of visual prompt injection that is hidden from
the user. The model vulnerability seems to be proportional to its capacity to
perform OCR. In our experiments, GPT-4V [18] trusted the text more than the

1 Research conducted at The Agency Challenge, 2023 (see
https://alignmentjam.com/jam/evaluations). An uncleaned notebook is available at
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image content (Figure 1 - left). It was not true for LLaVA-1.5-13b-4bit (neither
for LLaVA-1.5-13b), which was not affected by the prompt embedded with the
orange. In this work, we did not focus on extensively testing visual prompt
injection. Yet since LLaVA proved to be able to extract text from the image
representation (see Figure 1 - right), this limitation could be coming from the CLIP
embeddings and their information compression rate.

Figure 1 – Hidden prompt injection illustration on GPT4V (left) and
LLaVA-1.5-13b-4bit (right). The two images used are given in Appendix A.

1.2. Related Work

Large visual language models (VLMs) are vision-integrated LLMs that process
text and image inputs and generate text. Generally, they leverage a frozen vision
module (vision tower) that encodes visual inputs into text embedding space like
GPT4 [18], OpenFlamingo [20], BLIP2 [17], and LlaVa [1, 2]. This methodology
transposes to broader multimodal models and is facilitated by the similarity in
architecture when each component is a transformer.

Alignment of LLMs. The behaviours of LLMs can be misaligned with the intent of
their creators, which can lead to false, harmful or irrelevant content generation.
Therefore, alignment techniques have emerged such as Instruction Tuning and
RLHF, that help align models with user’s intents in order to reduce the previously
cited behaviours. Yet, in practice, these methods and their evaluation rely on
measuring proxies, and it is even more true with multimodal models where the
evaluation methodology is not well defined.

Adversarial attacks of aligned models. Previous works have explored different
types of attacks to unlock unwanted capabilities of aligned LLMs and VLMs.
Adversarial attacks where input images are slightly perturbed proved the
vulnerability of the alignment of multimodal foundation models [10, 11, 12, 14].
Authors in [9] introduced the concept of image hijacking, where images are
corrupted to induce an unwanted behaviour of the model. In [14], authors propose
cross-modality attacks where adversarial images are paired with textual prompts to
break the model’s alignment; these attacks only require access to the vision tower
of VLMs, which highlights vulnerabilities of multimodal models and requires
further investigation into alignment approaches.
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We outline a methodology based on embedding space that could be leveraged for
visual prompt injection detection while exploring different types of attacks.

1.3. Research Question

The main motivation of this work can be stated as:

● Can we evaluate and detect visual prompt injection?

Obviously, this question is broad, hard and fuzzy, yet it can be decomposed. The
visual prompt injection is a direct consequence of the model's capacity to “read” the
text of an image by implementing some sort of OCR algorithm (most likely per
word instead of per character). Hot take: the prompt contrast limit such that it
remains understandable (weaker for LLaVA) is anecdotal. It might mostly be due
to the precision of the high-frequency filters of CLIP and unrelated to the
algorithmic implementation of OCR by the model.

We thus propose the two following questions:

● Is this vulnerability linked to the CLIP representation or the LM
interpretation of it?

● Can the representation of text be detected in an image? And can this be
leveraged to derive a new methodology for evaluating models’ robustness?

These questions don’t entirely answer the initial problem but outline an exploratory
research track towards it. If successful, these research tracks could pave the road
towards being able to quantitatively evaluate such OCR vulnerabilities.

2. Experiments
2.1. Simple Visual Question Answering

As outlined previously, simple VQA can enable the evaluation of a complete model
(modality towers like vision + language model). This method can leverage the
complete field of behavioural LLM evaluation but necessitates a new dataset design.
Although capabilities are already being measured [19], a similar dataset to
TruthfulQA could be designed using image classification performances. Dangerous
capabilities evaluation might require the identification of potential prompt injections
or image corruption methods.

2.2. CLIP Embeddings Analysis

In order to analyse the image representation of CLIP, four classes of images were
used (tomatoes, oranges, text describing tomatoes and text describing oranges).
With these four classes, we hoped to identify two directions: the fruit type
(orange/tomato) and the concept manifestation type (text/object). This can be
naturally done using a principal component analysis.
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Figure 2 presents the results of performing a PCA on the CLIP image
representation on the different categories of samples.

Figure 2 – CLIP image representation projected using a PCA. 20 representation
samples per category were used. The prompt injection embedded with the orange
was also projected. Four of the images used and the prompt injection are given in

Appendix B.

This result, although trivial, is good for framing a white-box paradigm of VLM
image encoder evaluation. This identified text/no-text component (F1) can be used
to evaluate the model representation of the corrupted image. In Figure 2, the CLIP
embeddings are “safe” for this test case, which might not be the case for the
embeddings used by GPT-4V [18]. This methodology is model-agnostic but
necessitates full access to the model’s internals, and to remove its subjectivity, the
measure needs to be binarised.

2.3. Gradient Corrupted Images

Models have proven to be vulnerable to gradient-corrupted images [8], and this also
transposes to VLM has been proven by recent works [9-15]. More precisely, [9]
shows how to attack a VLM using an image to trigger the desired behaviour. Here,
we propose to only use the image decoder as an optimiser target with a
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misclassification objective close to [13-14]. It is lightweight and might transpose to
other models more easily.

The method consists of combining a gradient descent on tomato text and image
embeddings with a gradient ascent on orange text and image embeddings. The
images can be the object or a text description written on the image. The loss is
given by the following equation:
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Figure 3 – Successful gradient corruption using the vision tower and injected into
the language modelling. The two images used are given in Appendix C.

This method proved efficient for providing corrupted images. These images couldn’t
fool GPT4V but might affect other models see the discussion below (section 3.2).

3. Discussion
3.1. Dangerous Multimodal Capabilities

With multimodality, the potentially dangerous capabilities are multiplied. Here, the
threat described is the combination of the OCR capability and Image/Text aligned
embedding capability. Both are harmful alone but need to be taken with care when
combined.

3.2. Gradient Corrupted Image

Although gradient corruption is absolutely a white box method, there are two ways
that it could be transferred to black box evaluation. The first obvious is the re-use
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of the same vision tower, a.k.a the image encoder. For example, LLaVAs [1, 2] and
BLIP-2 [17] share the same image encoder. However, it might also transfer to
other models like OpenFlamingo [20] or GPT-4V [18], e.g. if their residual
stream shares the same privilege basis caused by optimisers [16],

3.3. Conclusion

The image representation analysis showed that CLIP is compressing visual and
textual concepts in a different manner, which makes the model vulnerable to visual
prompt injection. The next step would be to analyse the different CLIP models
quantitatively using the proposed method. Then, it would be interesting to dig into
the textual part of the LLM to jointly evaluate the representation and its
interpretation.
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A. Hidden Prompt Injection Examples
Using a text colour similar to the background colour (few levels of differences out
of 255).

Figure 4 – Images embedding a message hidden from the human eye.

B. CLIP Embeddings Analysis Samples
Using a text colour similar to the background colour (few levels of differences out
of 255).
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Figure 5 – Four images used in the analysis of the CLIP visual representations.
The actual images are taken from [7], while the texts are first generated by

ChatGPT before being printed on an image.
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Figure 6 – Visual prompt injection represented in the PCA projection (which
doesn’t affect LLaVA).

C. Gradient Corrupted Image

Figure 7 – Gradient corrupted image produced with the experiments described in
section 2.3 with an infinite distance of 20/255 with the original image.
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