
Gradient Descent Over Interpolated Activation
Patches for Circuit Discovery

Glen M. Taggart

In gpt-2-small there are h
n−1∑
l=0

lh = n(n − 1)/2 · h2 = 9504 “edges” between

attention heads and in general edges = O

(
h

n−1∑
l=0

lh

)
= O

(
n2h2)

edges available

to be patched in circuit discovery. It is intractible to patch all combinations of
edges, as that is

O
(
2 edges

)
= O

(
2(n2h2)

)
or in this case 29504 combinations to check. So, we are interested to find
robust computational approaches that do not experience this combinatorial
explosion. The approach implemented in this project works assigns learnable
patch interpolation coefficients to each of the edges (as well as connections from
the corrupted residual stream to the attention heads and from the head to the
output), and then does gradient descent on these coefficients.

Edges are of the form: (src layer, src head)→(dest layer, dest head)

1



Algorithm 1: Unoptimized psuedocode for gpt-2 (with 12 layers and 12
heads). Glosses over the output coefficients and residual input coefficient.
Input : input

θ: parameters; edge weight coefficients as θ src,dest

C: head activations from a clean forward pass
forward() : function; normal model forward to get cached values

for heads
forwardPatched(input){headlh ← . . . } : forward pass with head

h of layer l patched. Returns logits.
forwardPatched[i, j](input){headlh ← . . . } : forward pass

with head h of layer l patched. Returns head j of layer i.
Output: out: patched logits to perform gradient descent on

1 for i ∈ {1, 2, . . . , 12} do
2 for j ∈ {1, 2, . . . , 12} do
3 patchedij ← forwardPatched[i, j](input) {
4 for l ∈ {1, 2, . . . , i− 1} do
5 for h ∈ {1, 2, . . . , 12} do
6 headlh←Cij · (1− θlh,ij) + patchedlh · θlh,ij

7 end
8 end
9 }

10 end
11 end
12 out ← forwardPatched(input) {
13 for l ∈ {1, 2, . . . , 12} do
14 for h ∈ {1, 2, . . . , 12} do
15 headlh ← patchedlh

16 end
17 end
18 }

then out is used to calculate a loss and gradient descent can be performed over θ

The naive implementation of this requires something in the range of O(n2h2) to
O(nh) (depending on how naive) language model forward passes. However you
can do parallel src-heads within the same layer together by stacking them into a
batch dimension (moving that bit of complexity from time to space), and you
don’t need to recalculate all heads in earlier layers at each layer, which brings it
down to O(n) forward passes.

My plan was to start by implementing this just to clarify some things for myself,
then have it require an utterly unworkable amount of vram, after which I would
start by modifying the technique to first prune the graph by learning (head,layer)-
>(layer) edges prior to doing full edge processing on the subgraph produced by
that process. However, it’s actually just fully runnable currently! I still think

2



these improvements would be a good idea, as running a single iteration takes
10-30 seconds and at a batch size of 8 it uses ~15gb of VRAM. It’s very slow,
too, as one would expect for something that requires O(n) forward passes of
gpt2 per optimization step. . .

Nevertheless, it works somewhat at finding IOI edges! and manages to fit in
VRAM!

It recovers some of the IOI circuit along with some false positives, I haven’t
gotten to hyperparameter tune it enough to fully assess if this is capable of doing
a decent job discovering circuits. Current performance is not competitive.

It seems semi possible it could have some advantages over attribution patching if I
work out the kinks (if it could run fast?), but the limitations (slow, complex) may
be pretty hard to get past and the scaling properties are not great without some
preprocessing to prune the graph. The main advantage is that the gradients
are (closer to) in the context of the learned circuit, which is an important
feature when there are nonlinear dependencies between circuit components. Such
dependencies can also create problems for this method from what I’ve observed,
but there are also things I can imagine to do to mitigate this.

This is still very much a work in progress and there are many features I still
want to add, including:

• patching in residual stream values by token position
• adversarial coefficients network so that it discovers negative name mover

heads
• patching separately to q, k, v
• pruning modes

– mode where all nodes are also connected not just to children but to
all descendants to make the time complexity O(hn)

– edges with layer destinations only (this is implemented but needs to
be optimized for it to be worth it)

– ignore mlps so you can do it in just one gpt2 forward pass?

sample from the model working on IOI:

0.10 <- RS_0
2.2 <- 0.1,
2.11 <- 0.10,
3.0 <- RS_0 | <-0.1, 0.9, 2.9,
4.7 <- 0.1, 0.7, 0.10, 1.11, 2.2, 3.7,
5.5 <- RS_0 | <-0.1, 1.11, 3.0, 4.7,
6.1 <- 1.11, 3.0, 5.5,
6.7 <- 5.5,
6.8 <- 5.5,
6.9 <- RS_0 | <-0.1, 3.0,
7.1 <- 5.5,
7.9 <- 0.1, 0.10, 2.11, 3.0, 5.5, 6.9,

3



8.6 <- 3.0, 5.5, 6.9, 7.9,
8.10 <- 0.1, 3.0, 5.5, 6.9,
9.6 <- 0.10, 3.0, 5.5, 6.1, 7.9, 8.6, 8.10,
9.9 <- 0.1, 3.0, 5.5, 6.1, 7.9, 8.6, 8.10,
10.0 <- 0.10, 1.11, 3.0, 4.7, 5.5, 6.1, 6.9, 7.9, 8.6, 8.10,
10.1 <- 8.10,
10.10 <- 7.9, 8.6, 8.10,
11.2 <- 0.10, 1.11, 3.0, 5.5, 6.1, 8.6, 8.10,
11.6 <- 3.0, 7.9, 8.6,
11.10 <- 10.7,

| 9.6, 9.9, 10.0, 10.10, -> out

4


