Intro

Attention patterns are somewhat unique in transformers in that they are mappable back to individual tokens
[n_ctx n_ctx]. This makes them amenable to visual interpretation. However, these patterns are part of a larger
computation, contributing to an internal representation that the model uses to generate the output and we can't
take this too literally.

Nonetheless, visualizing and generating data on attention patterns can be beneficial for understanding and
interpreting the model's behavior. The AttentionData class is useful if you want to:

e Automatically generate and pass a prompt with relevant stats to a GPT for a first hypothesis at the head's
behavior

e See which tokens an attention head activates the most or least on (weighted by current sequence length)

¢ Quickly visualize 1D (instead of 2D) attention patterns and in different contexts

o See the distribution of how much a head scores a particular token and in what contexts

Importantly, the core AttentionData class can be used with any arbitrary combination of dataset (provided it is
List[List[str]]), HookedTransformer instance, and OpenAl GPT model. Please note this is a hackathon project
and thus may contain bugs and is unlikely to be maintained or developed further.

*Note: The unreadable black cells in the below output are just a result of the pdf conversion, they are viewable at
the demo notebook: https://github.com/connor-henderson/attention-data/blob/main/demo.ipynb

Setup

In [1]:

from attention data import AttentionData
import os

import openai

import torch as t

from transformer lens import HookedTransformer
$pip install python-dotenwv

from dotenv import load dotenv

load dotenv ()

Set API Keys

OPENAI API KEY = os.getenv ("OPENAI API KEY", "")

assert OPENAI API KEY, "OPENAI API KEY environment variable is missing from .env"
openai.api key = OPENAI API KEY

Saves computation time, since we don't need it for the contents of this notebook
t.set grad enabled (False)

device = t.device("cuda" if t.cuda.is available () else "cpu")

Requirement already satisfied: python-dotenv in ./env/lib/python3.10/site-packages (1.0.0
)

[notice] A new release of pip is available: 23.2.1 -> 23.3.2
[notice] To update, run: pip install —--upgrade pip
Note: you may need to restart the kernel to use updated packages.

In [2]:

Get a dataset

$pip install datasets > /dev/null
from datasets import load dataset
dataset = loadidataset("Stas/openwebtext—lOk", split="train", trust remote code=True)

FrnAad+a A~ N nArr am~ T A~~~ AF o~ a o~ Avraa 1 Al AW o R el 1 ~ a2 2 e}

https://github.com/connor-henderson/attention-data/blob/main/demo.ipynb

Lo Lrcee] nllew Lelcdoc UL J:JJ.J:J 15 davallidiblic. LD el ol TS LD .0 L
[notice] To update, run: pip install --upgrade pip
Note: you may need to restart the kernel to use updated packages.

In [3]:

Get a model

model = HookedTransformer.from pretrained("gpt2-small")

Loaded pretrained model gpt2-small into HookedTransformer

Usage

(Note: currently the first token attention seems overly high, might be a bug)

At A High Level

Instantiate an AttentionData class with your chosen passed parameters and call any of the following:

® describe head
® params: head=0, layer=0, num samples=10, custom prompt=None, print description=True
= Creates a prompt based of num samples of examples and returns (prompt, description) where the
description is the GPT's guess at the themes of the attention patterns
® get ranked multiples
m params: layer=0, head=0, str token=None, num multiples=10, reverse=False,
display=False
= Returns and displays the top (or bottom if reverse=True) num multiples number of tokens with the
highest score multiples, optionally pass in a specific str_token to only return instances of that token
® get random multiples
® params: layer=0, head=0, num multiples=10, display=False
» Returns and displays a random num multiples number of tokens

In [5]:

Make an AttentionData instance

attention data = AttentionData(
model=model,
text batch=dataset['text'][:100], # Speed is sensitive to the number of samples
openai model="gpt-3.5-turbo-1106",
openai api key=OPENAI API KEY,
suppress_first token=True, # Temporary hack for denoising, unprincipled

In []:

Let's look at L10H7, which was studied closely here: https://arxiv.orqg/pdf/2310.04625.p
dr

layer = 10

head = 7

In [6]:

Any first method call on attention data will be slowest since has to generate the cache

prompt, description = attention data.describe head(layer=layer, head=head, num samples=2
0)

Creating new samples for layer 10 head 7

Token indices sequence length is longer than the specified maximum sequence length for th
is model (5989 > 1024). Running this sequence through the model will result in indexing e

LLoOUL>

Making API call to gpt-3.5-turbo-1106...

Based on the attention patterns observed, it appears that the attention head in

the transformer focuses on several key aspects. Firstly, it pays attention to to
kens that represent proper nouns and entities, such as names of individuals and

organizations, which are crucial for understanding context and relationships. Ad
ditionally, there is attention towards tokens that signify actions or significan
t events in the text, indicating a focus on verbs and action-related words. The

attention scores also suggest an emphasis on the beginning and end of sentences,
potentially capturing the importance of sentence boundaries and transitions. Ov
erall, the attention head seems to prioritize information-carrying tokens, espec
ially those relating to entities, actions, and sentence structure, to effectivel
y process and generate coherent text.

In [14]:

The "multiple" is the multiple of the average attention pattern value for a row,
1.e. a multiple of 2 in a row with 10 tokens means the attention score was 0.2

ranked multiples = attention data.get ranked multiples (
head=head,
layer=layer,
num multiples=10,
display=True

Layer 10 Head 7, Top 10 / 17031 Multiples

Multiple

Token of Avg. Pattern
score
in 29.0
measure 29.0
by 29.0
now 29.0
their 29.0

children 29.0

B 29.0
on 29.0
week 29.0
3 29.0
<]
In [16]:

Look at the top occurences for a particular token

example str token = ranked multiples([4][0]
ranked multiples = attention data.get ranked multiples (
head=head,

layer=layer,

num multiples=10,

str token=example str token,
display=True

Layer 10 Head 7, Top 10 / 17031 Multiples for ' their'

Multiple

Token of Avg. Pattern
score
their 29.0

their 13.6

their 12.7

their 8.8

their 8.4

their 7.7

their 71

their 6.7

their 6.4

their 6.3

1]

In [18]:

Look at a random grouping of multiples that were larger than average

random multiples = attention data.get random multiples (
head=head,
layer=1layer,
num multiples=15,
display=True

Layer 10 Head 7, 15 / 17031 Random Multiples

Multiple

Token of Avg. Pattern
score
this 2.6
than 2.0
about 3.7
Gold 3.1
in 1.6
Wednesday 3.9
PL 21
vessel 2.8
Dept 115
humanity 5.4
up 3.0
really 1.2
of 15
Wednesday 2.6
4.1

hd

	Intro
	Setup
	Usage
	At A High Level

